Performance Evaluation and Networks

Statistics II

 Point Estimation
 Point Estimators

 Interval Estimation
 Designing and comparing estimators

 Hypothesis Testing
 Some classical estimators

Estimators

Framework: statistical inference from a sample $(x_1, ..., x_n) \in E^n$ seen as a realization of a random vector $(X_1, ..., X_n)$ following a law with an unknown parameter $\theta \in \Theta$ (usually $\Theta = \mathbb{R}$ or \mathbb{R}^d). This parameter may fully characterize the law or may be just one parameter among others.

Definition (Estimator of a parameter)

function θ_n: Eⁿ → Θ the parameter set, for size n samples
 family of functions (θ_n)_{n∈ℕ*} to deal with any sample size

Examples: $\frac{1}{n} \sum_{i=1}^{n} x_i$, $\max_{1 \le i \le n} x_i$, constant function *c*, ...

Point estimation: find some estimators such that the random variable $\hat{\theta}_n \stackrel{\text{def}}{=} \theta_n(X_1, \dots, X_n)$ gives some information about θ with high probability, so that there is a high probability that the value $\theta_n(x_1, \dots, x_n)$ from the sample holds some information about θ .

 Point Estimation
 Point Estimators

 Interval Estimation
 Designing and comparing estimation

 Hypothesis Testing
 Some classical estimators

Classical properties

Definition (estimator properties)

Let $(\theta_n)_{n \in \mathbb{N}^*}$ a family of estimators for some parameter $\theta \in \mathbb{R}$ (or \mathbb{R}^d) of the random vector $(X_n)_{n \in \mathbb{N}^*}$, and denote $\hat{\theta}_n = \theta_n(X_1, \dots, X_n)$. Such estimators are called:

- *unbiased* if $\forall n \in \mathbb{N}^*$, $\mathbb{E}(\widehat{\theta}_n) = \theta$
- asymptotically unbiased if $\lim_{n\to\infty} \mathbb{E}(\widehat{\theta}_n) = \theta$
- **consistent** if $\hat{\theta}_n \xrightarrow{P} \theta$ (convergence in probability)
- ▶ strongly consistent if $\hat{\theta}_n \stackrel{a.s.}{\rightarrow} \theta$ (almost sure convergence)

Example: let $(X_n)_{n\geq 1}$ i.i.d. random variables of finite mean μ and consider $\overline{\mu}_n(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$, then $\overline{\mu}_n$ is an estimator of μ which is *unbiased* (linearity of \mathbb{E}) and *strongly consistent* (strong law of large numbers).

Point Estimators Designing and comparing estimators Some classical estimators

Classical properties

Interpretation of estimator properties

• **unbiased** if
$$\forall n \in \mathbb{N}^*$$
, $\mathbb{E}(\widehat{\theta}_n) = \theta$

Given size *n*, the estimator may fail once (the outcome ω may yield $\hat{\theta}_n(\omega) = \theta_n(x_1, \dots, x_n) \neq \theta$) but generating many samples will give the right value θ on average.

- ► asymptotically unbiased if $\lim_{n\to\infty} \mathbb{E}(\hat{\theta}_n) = \theta$ Same as above if sample size also grows.
- **consistent** if $\hat{\theta}_n \xrightarrow{P} \theta$ (convergence in probability) Larger samples have a higher proportion of good estimates. But if one makes a single sample grow, the estimator may fail in a recurrent way.
- ► **strongly consistent** if $\hat{\theta}_n \xrightarrow{a.s.} \theta$ (almost sure convergence) The larger the sample, the better the estimation.

Point Estimators Designing and comparing estimators Some classical estimators

Designing estimators

Some approaches:

- Method of moments
- Maximum likelihood estimation (MLE)
- Maximum spacing estimation (MSE)

Point Estimators Designing and comparing estimators Some classical estimators

Method of moments

Idea: match empirical moments from the model $(X_1, ..., X_n)$ and from the data $(x_1, ..., x_n)$, then solve for unknown parameters.

General scheme for models with *d* parameters $\theta_1, \ldots, \theta_d$

- Express empirical moments for the model: $\overline{m}_k = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i^k)$ as function of $\theta_1, \dots, \theta_d$ (if you can)
- Consider empirical moments for the sample: $m_k = \frac{1}{n} \sum_{i=1}^n x_i^k$
- Choose some values of *k* for which you match those moments: $\overline{m}_k = m_k$
- Solve this system of equations for unknown $\theta_1, \ldots, \theta_d$

Advice: best suited for models $(X_1, ..., X_n)$ with i.i.d. random variables, where it often yields consistent estimators (law of large numbers).

 Point Estimation
 Point Estimators

 Interval Estimation
 Designing and comparing estimators

 Hypothesis Testing
 Some classical estimators

Method of moments

Example: $(X_1, ..., X_n)$ i.i.d. ~ $\mathcal{U}([a, b])$ uniform over [a, b], where $\overline{m}_1 = \frac{a+b}{2}$ and $\overline{m}_2 = \frac{b^3-a^3}{2(b-a)}$. Consider the system of equations $\overline{m}_1 = m_1$ and $\overline{m}_2 = m_2$, its solution is $a_n = m_1 - \sqrt{3(m_2 - m_1^2)}$ and $b_n = m_1 + \sqrt{3(m_2 - m_1^2)}$.

Example: $(X_1, ..., X_n)$ i.i.d. ~ $\mathscr{B}(p)$ Bernoulli, where $\overline{m}_1 = p$ and $\overline{m}_2 = p$. Then depending on the choice of equation, one get the estimators $p_n = m_1$ or m_2 , which are the same for these particular laws.

Point Estimators Designing and comparing estimators Some classical estimators

Maximum likelihood estimation (MLE)

Definition (Likelihood of a sample)

- ► Let $\theta \in \mathbb{R}$ and f_{θ} the law of vector $(X_1, ..., X_n)$ which supposedly generated the sample $(x_1, ..., x_n)$, the **likelihood** of $(x_1, ..., x_n)$, denoted by $L_n(\theta)$ or $L_n(\theta, x_1, ..., x_n)$, is $f_{\theta}(x_1, ..., x_n)$.
- ► Particular case (i.i.d. sampling): when $X_1, ..., X_n$ are i.i.d. of law f_{θ} , then $L_n(\theta) = f_{\theta}(x_1) \cdots f_{\theta}(x_n)$.

Definition (Maximum Likelihood Estimator)

An estimator θ_n of θ is called a **maximum likelihood estimator** if θ_n maximizes $L_n(\theta)$, i.e. $\theta_n(x_1, ..., x_n) = \underset{\theta \in \mathbb{R}}{\operatorname{argmax}} L_n(\theta, x_1, ..., x_n)$

Point Estimators Designing and comparing estimators Some classical estimators

Maximum likelihood estimation (MLE)

In practice: maximize the function or its logarithm, thus study $\frac{\partial L_n(\theta)}{\partial \theta}(x_1,...,x_n)$ or $\frac{\partial \log L_n(\theta)}{\partial \theta}(x_1,...,x_n)$, when defined, to find θ_n .

Example: faulty machine with i.i.d. Bernoulli errors $\mathscr{B}(p)$. MLE of p for sample $(x_1, \ldots, x_n) \in \{0, 1\}^n$?

Example: Poisson traffic with i.i.d. exponential inter-arrivals of parameter λ . MLE of λ for sample $(x_1, \ldots, x_n) \in \mathbb{R}^n_+$?

Maximum likelihood estimation (MLE)

In practice: maximize the function or its logarithm, thus study $\frac{\partial L_n(\theta)}{\partial \theta}(x_1,...,x_n)$ or $\frac{\partial \log L_n(\theta)}{\partial \theta}(x_1,...,x_n)$, when defined, to find θ_n .

Example: faulty machine with i.i.d. Bernoulli errors $\mathscr{B}(p)$. MLE of p for sample $(x_1, \ldots, x_n) \in \{0, 1\}^n$?

Let $n_0 = |\{i \mid x_i = 0\}|$ and $n_1 = |\{i \mid x_i = 1\}|$. Study the variations of $p \mapsto L_n(p, x_1, \dots, x_n) = p^{n_1}(1-p)^{n_0}$ by differentiating. The maximum is reached for $p_n = n_1/(n_0 + n_1) = \sum_{i=1}^n x_i/n$

Example: Poisson traffic with i.i.d. exponential inter-arrivals of parameter λ . MLE of λ for sample $(x_1, \ldots, x_n) \in \mathbb{R}^n_+$?

Maximum likelihood estimation (MLE)

In practice: maximize the function or its logarithm, thus study $\frac{\partial L_n(\theta)}{\partial \theta}(x_1,...,x_n)$ or $\frac{\partial \log L_n(\theta)}{\partial \theta}(x_1,...,x_n)$, when defined, to find θ_n .

Example: faulty machine with i.i.d. Bernoulli errors $\mathscr{B}(p)$. MLE of p for sample $(x_1, \ldots, x_n) \in \{0, 1\}^n$?

Let $n_0 = |\{i \mid x_i = 0\}|$ and $n_1 = |\{i \mid x_i = 1\}|$. Study the variations of $p \mapsto L_n(p, x_1, \dots, x_n) = p^{n_1}(1-p)^{n_0}$ by differentiating. The maximum is reached for $p_n = n_1/(n_0 + n_1) = \sum_{i=1}^n x_i/n$

Example: Poisson traffic with i.i.d. exponential inter-arrivals of parameter λ . MLE of λ for sample $(x_1, \ldots, x_n) \in \mathbb{R}^n_+$? Study the variations of $\lambda \mapsto L_n(\lambda, x_1, \ldots, x_n) = \lambda^n e^{-\lambda(x_1 + \cdots + x_n)}$ by differentiating.

The maximum is reached for $\lambda_n = n/(x_1 + \dots + x_n)$

Point Estimators Designing and comparing estimators Some classical estimators

Consistency of MLE

Hypotheses: model = random vector *X* following a law from the family $f_{\theta}, \theta \in \Theta$, and θ_n some MLE estimator of θ .

Theorem (Consistency of MLE)

If the next conditions are satisfied:

- *identification*: $\theta_1 \neq \theta_2 \Rightarrow f_{\theta_1} \neq f_{\theta_2}$
- compactness: Θ is compact
- *continuity*: $(\theta, x) \mapsto f_{\theta}(x)$ *is continuous*
- ▶ bounded entropy: $\forall \theta \in \Theta$, $H_{\theta} = -\int f_{\theta}(x) \log f_{\theta}(x) dx < +\infty$

Then $\widehat{\theta}_n \xrightarrow{P} \theta$

Point Estimators Designing and comparing estimators Some classical estimators

Comparison of estimators

Some quality index: mean squared error (MSE)

 $R(\theta_n, \theta) \stackrel{\text{def}}{=} \mathbb{E}(\widehat{\theta}_n - \theta)^2$

Definition (Dominant estimators)

Let θ_n and ψ_n two estimators of θ , θ_n is said to dominate ψ_n if $\forall \theta$, $R(\theta_n, \theta) \leq R(\psi_n, \theta)$ with strict inequality somewhere.

Remark: there is not always an estimator dominating all others.

Point Estimators Designing and comparing estimators Some classical estimators

Fisher Information

Hypotheses: model = random vector *X* following a law from the family $f_{\theta}, \theta \in \Theta$.

Definition (Fisher Information)

If the next conditions are satisfied:

- the support of f_{θ} is indep of θ
- ▶ $\frac{\partial f_{\theta}}{\partial \theta}(x)$ and $\frac{\partial^2 f_{\theta}}{\partial \theta^2}(x)$ exists $\forall x, \forall \theta \in \Theta$
- ► $\forall A \text{ borelian set, the next integrals are well-defined and}$ $\frac{\partial}{\partial \theta} \int_A f_{\theta}(x) dx = \int_A \frac{\partial}{\partial \theta} f_{\theta}(x) dx, \quad \frac{\partial^2}{\partial \theta^2} \int_A f_{\theta}(x) dx = \int_A \frac{\partial^2}{\partial \theta^2} f_{\theta}(x) dx$

Then the Fisher information is $I(\theta) = \mathbb{E}\left[\left(\frac{\partial \log f_{\theta}}{\partial \theta}(X)\right)^2\right]$

 Point Estimation
 Point Estimators

 Interval Estimation
 Designing and comparing estimators

 Hypothesis Testing
 Some classical estimators

Efficient estimator

Theorem (Cramer-Rao bound)

Let θ_n unbiased estimator of θ , where Fisher information $I(\theta)$ is well-defined and non null, then

 $R(\theta_n, \theta) \ge \frac{1}{n} \frac{1}{I(\theta)}$

Definition (Efficient estimator)

An estimator is called efficient if it reaches this lower bound.

Theorem (Efficiency of MLE)

Let θ_n MLE estimator of θ , under the same assumptions as the consistency theorem, then θ_n is efficient and $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} \mathcal{N}(0, 1/I(\theta))$

Point Estimators Designing and comparing estimators Some classical estimators

Some standard estimators

Definition (standard mean estimator)

Let $(x_1, ..., x_n) \in \mathbb{R}^n$ sample supposedly generated by i.i.d. random variables of finite mean μ . The standard estimator of μ is the **empirical mean**: $\overline{\mu}_n(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^n x_i$. It is unbiased and strongly consistent.

Definition (standard estimator of a finite discrete distribution)

Let $(x_1, ..., x_n) \in E^n$ sample supposedly generated by i.i.d. random variables of discrete distribution over finite set E, with mass p_e for $e \in E$. The standard estimator of vector $p = (p_e)_{e \in E}$ is the **frequency** vector: $\overline{p}_n(x_1, ..., x_n) = \left(\frac{1}{n}\sum_{i=1}^n \mathbb{1}_{\{e\}}(x_i)\right)_{e \in E}$. It is an MLE, unbiased and strongly consistent.

Point Estimators Designing and comparing estimators Some classical estimators

Some standard estimators

Definition (standard variance estimator when mean μ is known)

Let $(x_1, ..., x_n) \in \mathbb{R}^n$ sample supposedly generated by i.i.d. random variables of finite known mean μ and unknown variance V. The standard variance estimator of V is the **empirical variance**: $\overline{V}_n(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$. It is unbiased and strongly consistent.

Definition (unbiased standard variance estimator when mean μ is unknown)

Let $(x_1, ..., x_n) \in \mathbb{R}^n$ sample supposedly generated by i.i.d. random variables of finite unknown mean μ and unknown variance V. The standard variance estimator of V is the **unbiased empirical** variance: $\overline{V}_n(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{\mu}_n)^2$ where $\overline{\mu}_n(x_1, ..., x_n) = \frac{1}{n-1} \sum_{i=1}^n x_i$. It is unbiased and strongly consistent.

Confidence Interval

Confidence Interval

Framework: statistical inference from a sample $(x_1, ..., x_n) \in E^n$ seen as a realization of a random vector $(X_1, ..., X_n)$ following a law with an unknown parameter $\theta \in \Theta$.

Definition (Confidence interval)

Let $0 < \alpha < 1$, consider two function I_n^- and I_n^+ from \mathbb{R}^n to \mathbb{R} , if $\mathbb{P}(\theta \in [I_n^-(X_1, ..., X_n), I_n^+(X_1, ..., X_n)] = \alpha$ (resp. $\geq \alpha$), then this interval (whose extremities are random variables) is called a confidence interval for θ of exact level α (resp. of level α).

Extension: if this definition holds only when $n \to +\infty$, it is called an asymptotic confidence interval.

Confidence Interval

Confidence Interval

Example: suppose that the sample $(x_1, ..., x_n)$ has been generated by i.i.d. normal laws $\mathcal{N}(\mu, 1)$, find a confidence interval for μ of exact level α .

Consider the standard estimator of μ which is the empirical mean, then $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$, follows the normal law $\mathcal{N}(\mu, 1/n)$, thus $\sqrt{n}(\hat{\mu}_n - \mu) \sim \mathcal{N}(0, 1)$. For $\delta > 0$, we have:

$$\mathbb{P}(|\widehat{\mu}_n - \mu| \le \frac{\delta}{\sqrt{n}}) = \frac{1}{\sqrt{2\pi}} \int_{-\delta}^{+\delta} e^{-x^2/2} dx$$

Given α , choose δ such that the integral equals α , then we can rewrite the inequalities and get:

$$\mathbb{P}(\mu \in [\widehat{\mu}_n - \delta/\sqrt{n}, \widehat{\mu}_n + \delta/\sqrt{n}]) = \alpha$$

Confidence Interval

Confidence Interval

Example: suppose that the sample (x_1, \ldots, x_n) has been generated by i.i.d. normal laws $\mathcal{N}(\mu, \sigma^2)$ where σ is known and μ unknown, find a confidence interval for μ of exact level α . Consider the standard estimator of μ which is the empirical mean, then $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$, follows the normal law $\mathcal{N}(\mu, \sigma^2/n)$, thus

 $\sqrt{n}(\hat{\mu}_n - \mu)/\sigma \sim \mathcal{N}(0, 1)$. For $\delta > 0$, we have:

$$\mathbb{P}(|\widehat{\mu}_n - \mu| \le \frac{\delta\sigma}{\sqrt{n}}) = \frac{1}{\sqrt{2\pi}} \int_{-\delta}^{+\delta} e^{-x^2/2} dx$$

Given α , choose δ such that the integral equals α , then we can rewrite the inequalities and get:

$$\mathbb{P}(\mu \in [\widehat{\mu}_n - \frac{\delta\sigma}{\sqrt{n}}, \widehat{\mu}_n + \frac{\delta\sigma}{\sqrt{n}}]) = \alpha$$

Confidence Interval

Confidence Interval

Example: suppose that the sample $(x_1, ..., x_n)$ has been generated by i.i.d. normal laws $\mathcal{N}(\mu, \sigma^2)$ where σ is known and μ unknown, find a confidence interval for μ of exact level α .

Confidence interval for the mean of i.i.d. normal laws when the variance is known

- choose the confidence level α
- (2) find the $(1 + \alpha)/2$ -quantile $q_{(1+\alpha)/2}$ of $\mathcal{N}(0, 1)$
- **3** return the confidence interval $\mu \in [\widehat{\mu}_n \frac{q_{(1+\alpha)/2}\sigma}{\sqrt{n}}, \widehat{\mu}_n + \frac{q_{(1+\alpha)/2}\sigma}{\sqrt{n}}]$ of exact level α , where $\mu_n(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i$.

Confidence Interval

Confidence Interval

Example: suppose that the sample $(x_1, ..., x_n)$ has been generated by i.i.d. normal laws $\mathcal{N}(\mu, \sigma^2)$ where σ is unknown and μ unknown, find a confidence interval for μ of exact level α . **Hint:** consider the estimators for the mean $\overline{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and for the variance $\overline{V}_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{\mu}_n)^2$, then $\frac{\overline{\mu}_n - \mu}{\sqrt{\overline{V}_n/n}} \sim t(n-1)$ the Student distribution with n-1 degrees of freedom.

Confidence interval for the mean of i.i.d. normal laws when the variance is unknown

- choose the confidence level α
- 2 find the $(1 + \alpha)/2$ -quantile $q_{(1+\alpha)/2}$ of t(n-1)

• return the confidence interval of exact level α , $\mu \in [\hat{\mu}_n - \frac{q_{(1+\alpha)/2}\hat{\sigma}_n}{\sqrt{n}}, \hat{\mu}_n + \frac{q_{(1+\alpha)/2}\hat{\sigma}_n}{\sqrt{n}}]$, where $\mu_n = \frac{1}{n}\sum_{i=1}^n x_i$ and $\sigma_n = \left(\frac{1}{n-1}\sum_{i=1}^n (x_i - \mu_n)^2\right)^{1/2}$

A decision problem Some classical tests

A decision problem

Framework: same as before but with a decision problem.

Example: let *X* random variable of uniform law in [*a*, 1] where $0 \le a < 1$ is unkown. A sample (x_1, \ldots, x_n) has been generated by *n* independent trials of *X*. Can you find an algorithm which decides which is the right answer:

- $H_0: a = 0$
- $H_1: a > 0$

Ideas?

Warning: two risks

- ▶ Reject *H*⁰ whereas it is true (Type I error)
- ► Accept *H*⁰ whereas it is false (Type II error)

A decision problem Some classical tests

A decision problem

Framework: same as before but with a decision problem.

Example: let *X* random variable of uniform law in [*a*, 1] where $0 \le a < 1$ is unkown. A sample (x_1, \ldots, x_n) has been generated by *n* independent trials of *X*. Can you find an algorithm which decides which is the right answer:

- $H_0: a = 0$
- $H_1: a > 0$

Ideas?

Warning: two risks

- ► Reject H_0 whereas it is true (Type I error) proba $\leq \beta$
- Accept *H*⁰ whereas it is false (Type II error)

A decision problem Some classical tests

A decision problem

Framework: same as before but with a decision problem.

Example: let *X* random variable of uniform law in [*a*, 1] where $0 \le a < 1$ is unkown. A sample (x_1, \ldots, x_n) has been generated by *n* independent trials of *X*. Can you find an algorithm which decides which is the right answer:

- $H_0: a = 0$
- $H_1: a > 0$

Ideas?

Warning: two risks

- ► Reject H_0 whereas it is true (Type I error) proba $\leq \beta$
- ► Accept *H*⁰ whereas it is false (Type II error) try minimizing

A decision problem Some classical tests

A decision problem

Example: let *X* random variable of uniform law in [*a*, 1] where $0 \le a < 1$ is unkown. A sample (x_1, \ldots, x_n) has been generated by *n* independent trials of *X*. Can you find an algorithm which decides which is the right answer: either H_0 : a = 0, or H_1 : a > 0**Idea:** choose a threshold s > 0 and run the next algorithm

Test

• if $\min(x_1, \ldots, x_n) < s$, accept H_0 , else reject H_0

Question: how to choose *s* such that Type I error has proba $\leq \beta$?

A decision problem Some classical tests

A decision problem

Example: let *X* random variable of uniform law in [*a*, 1] where $0 \le a < 1$ is unkown. A sample $(x_1, ..., x_n)$ has been generated by *n* independent trials of *X*. Can you find an algorithm which decides which is the right answer: either H_0 : a = 0, or H_1 : a > 0**Idea:** choose a threshold s > 0 and run the next algorithm

Test

• if $\min(x_1, \ldots, x_n) < s$, accept H_0 , else reject H_0

Question: how to choose *s* such that Type I error has proba $\leq \beta$? Suppose a = 0, $\mathbb{P}(\text{Type I error}) = \mathbb{P}(\min(X_1, \dots, X_n) \geq s) = (1 - s)^n$. Thus choose *s* such that $(1 - s)^n \leq \beta$, that is $1 - \beta^{1/n} \leq s \leq 1$. Now note that if a > 0, $\mathbb{P}(\text{Type II error}) = 0$ if $s \leq a$ and $\mathbb{P}(\text{Type II error}) = 1 - (\frac{1 - s}{1 - a})^n$ if s > a. To minimize this proba while ensuring low Type I error, choose $s = 1 - \beta^{1/n}$.

Chi-square test of goodness of fit

Hypothese: *X* random variable with values in $\{a(1), \ldots, a(k)\}$

- H_0 : *X* has vector p = (p(1), ..., p(k)) as mass function
- H_1 : X has another distribution

Question: given a sample $(x_1, ..., x_n)$ generated by independent trials of *X*, provide an algorithm to decide H_0 with confidence level α (that is $\mathbb{P}(\text{Type I error}) \leq 1 - \alpha$).

Theorem

Let $f_n(i) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{a(i)\}}(x_j)$ frequency of a(i) in the sample. Let $\chi^2(p, f_n) \stackrel{\text{def}}{=} n \sum_{i=1}^k \frac{[p(i) - f_n(i)]^2}{p(i)}$. Assuming H_0 , we have $\chi^2(p, f_n) \stackrel{D}{\to} \chi^2(k-1)$ (χ^2 -distribution with k-1 degrees of freedom).

A decision problem Some classical tests

Chi-square test of goodness of fit

Theorem

Let $f_n(i) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{a(i)\}}(x_j)$ frequency of a(i) in the sample. Let $\chi^2(p, f_n) \stackrel{\text{def}}{=} n \sum_{i=1}^k \frac{[p(i) - f_n(i)]^2}{p(i)}$. Assuming H_0 , we have $\chi^2(p, f_n) \stackrel{D}{\to} \chi^2(k-1)$

Application: you throw a dice 120 times and you obtain the next output frequencies

Number	1	2	3	4	5	6
Frequency	14	16	28	30	18	14

Is this dice unbiased (hypothesis $H_0)$? Answer with confidence level 95%

A decision problem Some classical tests

Chi-square test of goodness of fit

Theorem

Let $f_n(i) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{a(i)\}}(x_j)$ frequency of a(i) in the sample. Let $\chi^2(p, f_n) \stackrel{\text{def}}{=} n \sum_{i=1}^k \frac{[p(i) - f_n(i)]^2}{p(i)}$. Assuming H_0 , we have $\chi^2(p, f_n) \stackrel{D}{\to} \chi^2(k-1)$

Application: you throw a dice 120 times and you obtain the next output frequencies

Number	1	2	3	4	5	6
Frequency	14	16	28	30	18	14

Is this dice unbiased (hypothesis H_0) ? Answer with confidence level 95% $p = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}), \chi^2(p, f_n) \approx 12.8$ for sample, look at $\chi^2(5)$ table \rightarrow 0.95-quantile $\approx 11.07 \rightarrow$ reject